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Incompatibility group P1 (IncP-1) plasmid diversity was evaluated based on replication initiator protein
(TrfA) phylogeny. A new and highly divergent clade was identified. Replication assays indicated that TrfA of
recently discovered IncP-1 plasmids from Xylella fastidiosa and Verminephrobacter eiseniae initiated plasmid
replication using cognate or heterologous origins of replication.

Incompatibility group P-1 (IncP-1) plasmids encode back-
bone modules for replication, stable inheritance, and con-
jugation plus DNA transfer, as well as accessory modules
conferring environmental adaptations (5). Five IncP-1 sub-
groups (�, �, �, �, and ε) have been described previously
(2, 8, 17, 20). Recently, an IncP-1 plasmid (pXF-RIV11;
GenBank accession no. GU938457) from the plant-patho-
genic bacterium Xylella fastidiosa was characterized (22) and
shown to be related to pVEIS01 (GenBank accession no.
CP000543) from the earthworm symbiont Verminephrobacter
eiseniae (16). Neither has been assigned to a subgroup, as
the gene complements and organizations of pXF-RIV11 and
pVEIS01 are sufficiently different from those of other
IncP-1 plasmids.

The IncP-1 replication module consists of trfA, encoding a
replication initiator protein (TrfA), and the origin of replica-
tion (oriV) (1, 15, 21). As TrfA is the only plasmid-encoded
protein required for replication, all IncP-1 plasmids bear trfA.
Thus, divergence among TrfA homologues may be informative
with respect to evolutionary history and subgroup classification
(2, 8). Here, we examine TrfA phylogeny to determine the
relationships of pXF-RIV11 and pVEIS01 with IncP-1 plas-
mids from a wide variety of bacteria.

The pXF-RIV11 TrfA sequence was used as a query in
BLAST searches of the GenBank protein database. Subjects
returned (Table 1) included TrfA from established members
of the five subgroups and numerous homologues not as-
signed to a subgroup. TrfA amino acid sequences were
aligned, and neighbor-joining analysis was performed using
Clustal X (10). Eighteen unclassified TrfA sequences (in-
cluding pXF-RIV11 and pVEIS01) formed a clade sharing a
most recent common ancestor with TrfA of pQKH54, the
archetype and sole recognized member of subgroup � (7), in
what is referred to here as the �-(expanded) subgroup (Fig.
1). Whereas the diversity of TrfA within subgroups �, �, �,

and ε was limited, genetic distances among homologues
clustering with TrfA of pQKH54 were substantially greater,
as indicated by branch lengths (Fig. 1).

Bahl et al. (2) suggested that the known diversity of IncP-1
plasmids could be skewed by discovery methods, especially
those based on accessory module phenotype (11, 24). Met-
agenomic analyses and mating trapping strategies have
yielded IncP-1 sequences from environmental samples (2, 3,
9, 18, 19, 23). However, trapping strategies may be biased, as
assays requiring plasmid mobilization limit discovery to
those able to propagate in experimental hosts. Metagenomic
methods lack phenotypic biases described above, as exem-
plified by PCR amplification of trfA sequences representing
all five subgroups from total community DNA isolated
from wastewater (2). Nonetheless, PCR-based methods are
biased due to primer design (26). To illustrate this last
point, all three primer sets employed by Bahl et al. (2)
shared limited sequence in common with pXF-RIV11 trfA
such that sequences of �-(expanded) subgroup plasmids
would not have been amplified.

It is remarkable that 17 of 18 TrfA homologues belonging
to subgroup �-(expanded) were discovered by genome se-
quencing projects (4, 13, 16, 25). The 18th (pXF-RIV11)
was discovered by direct extraction from cultured bacteria
without selection for phenotype (22). As discovery by ge-
nome sequencing projects is not based on the specific geno-
type/phenotype of resident plasmids associated with a bac-
terial genome, this newly recognized diversity of TrfA
suggests that mating trapping strategies and metagenomic
surveys were biased against discovery of subgroup �-(ex-
panded) plasmids.

Genes for four TrfA homologues are integrated into chro-
mosomes of their respective hosts (Table 1). This observa-
tion, coupled with the lack of functional analyses for most
plasmid-borne TrfA homologues of subgroup �-(expanded),
raises the question as to whether these divergent homo-
logues initiate plasmid replication. To partially address this
question, plasmids containing the minimal IncP-1 replica-
tion module of pXF-RIV11 or pVEIS01 inserted into the
Escherichia coli cloning vector pCR2.1 were constructed
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(12). Replication in E. coli was driven by the pCR2.1 ori.
Replication in X. fastidiosa strain Temecula1 was driven by
inserted IncP-1 replication modules; both trfA and oriV were
required.

As TrfA homologues encoded by pXF-RIV11 (YP_003603482)
and pVEIS01 (YP_980135) share 87% amino acid identity,
the two replication initiator proteins may be functionally
interchangeable. To test this hypothesis, plasmids contain-
ing cognate or heterologous combinations of trfA and oriV
were constructed and tested for replication in X. fastidiosa
(Fig. 2). Constructs bearing cognate replication elements
of pXF-RIV11 (pXF-S-XF) or pVEIS01 (pVE-S-VE) con-
tained an inserted SalI site (to facilitate replication element
exchange) between the trfA stop codon and cognate oriV.
Constructs bearing heterologous replication elements con-
tained trfA from pXF-RIV11 and oriV from pVEIS01 (pXF-
S-VE) or trfA from pVEIS01 and oriV from pXF-RIV11

(pVE-S-XF). The pemI/pemK addiction system of pXF-
RIV11 (12) was present on all constructs to confer stable
inheritance in X. fastidiosa.

Plasmids purified from E. coli JM109 were used to trans-
form X. fastidiosa strain Temecula1 by electroporation (14).
Plasmid pUCLAa (6) was used as a positive control; no
DNA was used as a negative control. X. fastidiosa transfor-
mants were selected on PD3 medium containing 5 �g/ml
kanamycin (22). Transformants (four per construct) were
picked and grown for 10 to 14 days in liquid PD3 medium
containing 5 �g/ml kanamycin. Plasmid DNA extracted
from subcultured X. fastidiosa transformants (22) was used
to transform E. coli.

Heterologous combinations of replication elements de-
rived from pXF-RIV11 and pVEIS01 were competent for
replication in X. fastidiosa (Fig. 2). Samples of the original
plasmids used to transform X. fastidiosa and samples of

TABLE 1. IncP-1 plasmid subgroupings based on TrfA phylogeny

Subgroup and plasmid
(size in bp) Host species (strain) TrfA protein accession no.

�
pRK2 derivative pRK310a (19,041) Pseudomonas sp.b AAK73385
pTB11 (68,869) Uncultured bacterium YP_112366
pRK2 derivative pLAFRa (20,352) Pseudomonas sp.b AAS78884

�
pTP6 (54,344) Uncultured bacterium YP_447013
pA1 (46,557) Sphingomonas sp. (A1) YP_302632
pA81 (98,192) Achromobacter xylosoxidans (A8) YP_195827
pBP136 (41,268) Bordetella pertussis (clinical isolate) YP_787935
pAOV002 (63,609) Acidovorax sp. (JS42) YP_974111

�
pQKH54 (69,966) Epilithic bacterium YP_619825

�
pIJB1 (99,448) Burkholderia cepacia (2a) YP_003358062
pAKD4 (56,803) Uncultured bacterium ADD63272

ε
pKJK5 (54,383) Uncultured bacterium YP_709140
pEMT3 (unknown) Uncultured bacterium CAC9491

�-(expanded)
pXF-RIV11 (25,105) Xylella fastidiosa (Riv11) YP_003603481
pVEIS01 (31,194) Verminephrobacter eiseniae (EF01-2) YP_980135
pVEIS01 (31,194) Verminephrobacter eiseniae (EF01-2) YP_980145
NAc Thiobacillus denitrificans (ATCC 25259) YP_314688
pALLVIN1 (102,242) Allochromatium vinosum (DSM180; ATCC 17899) YP_003445082
NA Polaromonas naphthalenivorans (CJ2) YP_982724
pPNAP02 (190,172) Polaromonas naphthalenivorans (CJ2) YP_973488
pPNAP01 (353,291) Polaromonas naphthalenivorans (CJ2) YP_973419
pPNAP05 (58,808) Polaromonas naphthalenivorans (CJ2) YP_973925
NA Pseudomonas putida (GB1) YP_001666930
pAph03 (37,695) “Candidatus Accumulibacter phosphatis” (clade IIA, UW-1) YP_003162894
pBglu-3 (141,067) Burkholderia glumae (BGR1) YP_002907630
pJS666 (360,405) Polaromonas sp. (JS666) YP_551815
pT118-1 (257,447) Rhodoferax ferrireducens (T118) YP_515978
pBM1 (167,422) Burkholderia multivorans (ATCC 17616) YP_001573703
pBglu-1 (133,591) Burkholderia glumae (BGR1) YP_002909816
pHI2424-1 (164,857) Burkholderia cenocepacia (HI2424) YP_840495
NA Nitrosococcus oceani (ATCC 19707) YP_342138

a Cloning vector with trfA derived from pRK2, originally isolated from Pseudomonas sp.
b Host of pRK2 parent plasmid.
c NA, not applicable; integrated in host chromosome.
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plasmids rescued from X. fastidiosa by transformation of E.
coli were digested with restriction enzymes to generate frag-
ments that differed in size, depending upon whether IncP-1
replication elements were derived from pXF-RIV11 or from
pVEIS01. These results indicated that specificity determi-
nants of TrfA for oriV recognition were conserved and that
consensus sequence differences (22) in oriV-iterated ele-

ments of pXF-RIV11 (TTACCGTCGCAGCATCCT) and
pVEIS01 (TTACCGTCGTAGCATCCGC) did not prevent
recognition by the heterologous TrfA. Modified plasmids
bearing cognate combinations of trfA and oriV (pXF-S-XF
and pVE-S-VE) replicated in X. fastidiosa (Fig. 2), demon-
strating that alteration of spacing (SalI site insertion) be-
tween replication elements was tolerated. Although trfA and

FIG. 1. Phylogeny of IncP-1 TrfA homologues. Presented is a neighbor joining tree (1,000 bootstrap iterations) based on alignment of TrfA
amino acid sequences. Taxa are indicated at branch tips by the IncP-1 plasmid name (or bacterial species name if trfA was integrated into the host
chromosome) followed by the GenBank protein accession number in parentheses. Branches and taxa previously assigned to IncP-1 subgroups �,
�, �, �, and ε are color coded. Eighteen taxa included in subgroup �-(expanded) are designated on the right. Numbers along branches indicate
bootstrap support of distal node; nodes with �60% bootstrap support were collapsed to polytomies; the bar at lower right corresponds to a genetic
distance of 0.1. The colored box denotes taxa used to construct minimal replicons bearing cognate or heterologous IncP-1 replication module
elements.
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oriV are adjacent to one another in both pXF-RIV11 and
pVEIS01, some IncP-1 plasmids have accessory modules
inserted at this locus (5). These observations suggest that
this same locus in pXF-RIV11, pVEIS01, and shuttle vector
derivatives may be used to insert foreign sequences.
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